Category: Famous Exoplanets

HR 8799 b, c, d, e

hr8799b
図1 HR 8799bの想像図と、遠くに見えるA型星 HR8799 (Y.Yamashiki, R.Kuroki & N.Hosono)

2008年11月、地球から128.5光年(39.4 pc)離れたペガスス座にあるA型主系列星HR8799星の周りで、HR8799bという木星の7倍程度の質量を持つ太陽系外惑星が発見されたという報告がなされました(図1:想像図)。観測はハワイにあるケック望遠鏡、ジェミニ北望遠鏡、そしてハッブル宇宙望遠鏡を用いて赤外線で行われており、同時にHR8799c, HR8799d, HR8799eという木星の10倍程度の質量を持つ惑星も見つかりました(図2,図3)。これらは直接撮像観測という、惑星自体の光を直接捉える手法で発見された初めての惑星たちとして有名です。

hr8799nn_d
図2 HR 8799dの想像図と、遠くに見えるA型星 HR8799 (Y.Yamashiki, R.Kuroki & N.Hosono)

hr8799system
図3 ExoKyotoで描いたHR 8799恒星系システムとそのハビタブルゾーン(SEAU, 赤色が金星相当軌道、緑色が地球相当軌道、水色が火星相当軌道、青がスノーラインを示す。それぞれの惑星(e-b)推定軌道は紫色)

2010年にはHR8799の周りに、同じく直接撮像観測で4つ目の惑星HR8799eという惑星も発見されました(Marois et al. 2010, Nature)。
更にこれらの惑星たちの発見を機に、過去の画像を再解析してみたところ、実は1998年のハッブル宇宙望遠鏡の観測画像(図5)と、2002年のすばる望遠鏡の観測画像(Fukagawa et al. 2009, ApJ)にHR8799bが写り込んでいたことが分かりました。

Kepler宇宙望遠鏡で発見された惑星を始め、多くの太陽系外惑星はドップラー法やトランジット法といった間接法で発見されています。
一方太陽系外惑星自体からの光を直接捉える手法(直接法)の場合、惑星発見数は間接法に比べ少なめです。しかし惑星からの光には惑星大気に含まれる分子の吸収や惑星表面(陸、海、森など)の色の情報が含まれており、惑星からの光の分光観測は、惑星大気や表面の環境など、惑星自体の性質を詳細に知るためには欠かせない観測になります。2013年に報告されたHR8799c周りの惑星たちの分光観測からは、大気中の水やメタンなどの存在が示唆されています(Konopacky et al. 2013, Science )。日本でも近年、すばる望遠鏡を用いて太陽系外惑星の直接撮像観測が行われており、今後は京都大学岡山3.8m望遠鏡を用いた直接撮像観測も行われる予定です。

hr_8799_b_stz0

hr_8799_b_stz3
図8 a,b ExoKyoto Stellar Windowにて表示したHR8799の位置 ペガスス座に位置する

(文責:野津翔太)

HR 8799 についての詳しい情報はこちら

HR8799 System
HR 8799 b
HR 8799 c
HR 8799 d
HR 8799 e

HD 189733 b

 

<Imaginary Picture of HD189733 b, Credit Daichi Ogawa, SGH Moriyama High School>

HD 189733 b は 2005 年に発見された木星サイズの太陽系外惑星で、こぎつね座 HD 189733 A 星の周りを 2.22 日の周期で回っています。太陽系からの距離は 62.9 光年(19.3 pc)です。軌道が主星から非常に近い「ホット・ジュピター」の一つで、恒星の重力により常に一つの面を主星に向けています。

https://www.nasa.gov/mission_pages/spitzer/multimedia/A-Knutson-surface.html

またこの天体は太陽系からの距離が比較的近いため、様々な観測によりその詳細な性質が調べられているのが特徴です。2007 年、スピッツァー宇宙望遠鏡の観測で、惑星表面の温度分布が観測されました。それによると、最も温度が高い場所は惑星表面で主星が真上に見える場所と 30 度ほど東にずれている事が分かりました。この事から、HD 189733 b では激しい風が吹いていて、熱を運んでいるのだと考えられています。ちなみにこの研究は、史上初の太陽系外惑星表面の「地図」の発表としても有名になりました。

hd189733b
(Image Credit: Ryusuke Kuroki, Yosuke Yamashiki & Natsuki Hosono)

さらに2013年にはハッブル宇宙望遠鏡の観測により、惑星が中心の星の裏側を通り隠れる際に青色の波長の光だけが弱くなることから、この惑星の色が青色であることが分かりました。
これは水の海があるからではなく、大気中に存在するケイ酸塩粒子が高温ゆえにガラスの雨粒の様になっており、これが中心の星からの光を散乱することで青く輝いています。

同じく 2013 年にはチリの Very Large Telescope による波長分解能の高い詳細な観測から、惑星自体の H2O, CO ガス輝線放射が検出されたことでも話題になりました。そのほかこの年には、NASA のチャンドラと欧州の XMM ニュートンという2つの X 線天文衛星でこの天体を観測することにより、太陽系外の恒星の手前をその星を公転する系外惑星が横切る「トランジット」が、X 線で初めて検出されています。

(文責:野津翔太)

hd_189733_b_stz0
(Position in Stellar Map of star HD 189733 and its Exoplanet HD 189733 b)

hd_189733_b_stz3
(Zoomed position in Stellar Map of star HD 189733 and its Exoplanet HD 189733 b (zoom level 3))

HD 189733 b についての詳しい情報はこちら。
http://www.exoplanetkyoto.org/exohtml/HD_189733_b.html

TRAPPIST-1 b, c, d, e, f, g, h

(Imaginary TRAPPIST-1 System by Exoplanetkyoto Image Credit: Yosuke A. Yamashiki, Fuka Takagi, Ryusuke Kuroki, Natsuki Hosono)

trappist_d
(Imaginary Picture of TRAPPIST-1 d, Credit Shione Fujita & SGH Moriyama High School)

TRAPPIST-1 は、みずがめ座に位置し、太陽系からおよそ39光年離れたところに存在する、M8型の赤色矮星で、表面温度2550K、半径はProxima Centauriより小さい0.117太陽半径、質量は0.08太陽質量です。木星の半径は0.1太陽半径、質量は0.001太陽質量なので、見かけ上木星よりわずかに大きく、質量は木星の80倍程度なので、いわゆる自分で光るギリギリの大きさの恒星(矮星)だと言えます。Ultra Cool Dwarf Star(超低温矮星)とも言われています。

(TRAPPIST-1の大きさの比較図 左はProxima Centauri星との比較、右は太陽との比較)

TRAPPISTとは、TRAnsiting Planets and PlanetesImals Small Telescopesの略で、ベルギー・リエージュ大学(http://www.ulg.ac.be/cms/c_5000/accueil)の天文地学海洋専攻(AGO)のプロジェクトでチリのESO La Silla 天文台 とモロッコのOukaïmden 天文台(2016.10.6開始)に設置された望遠鏡ネットワークであり、このTRAPPIST-1は2016年にLa Silla天文台で発見され、地球よりわずかに大きな惑星が3つ、このクラスの赤色矮星の周りに初めて発見されました1) 。さて、特にこのTRAPPIST-1系のハビタブルゾーンにあると言われた3番目の惑星TRAPPIST-1dのトランジット観測による周期と軌道が確定せず、ハビタブルゾーンの惑星発見のニュースはキャンセルされるかと心配されていました。ところがそれがさらなる大発見につながったのです。

2017年2月22日(日本時間2月23日午前3時)、NASAはTRAPPIST系に合計7つの惑星が発見されたと発表しました。また、そのうち3-4つはハビタブルゾーンにあると考えられています。

(Imaginary Picture of TRAPPIST-I b, credit, Yosuke Yamashiki, Ryusuke Kuroki & Natsuki Hosono)

<潮汐ロックされたと仮定した場合のTRAPPIST-1 dの想像図 credit: Miu Shimizu, Habitable Research Group SGH Moriyama High School>

<潮汐ロックされたと仮定した場合のTRAPPIST-1 eの想像図 credit: Rina Maeda, Habitable Research Group SGH Moriyama High School>

(潮汐ロックされたと仮定した場合のTRAPPIST-1 fの想像図 (アイボールアース), credit: Haruka Inagaki, Habitable Research Group, SGH Moriyama High School)

(Imaginary Picture of TRAPPIST-I h, covered with imaginary ice, credit, Yosuke Yamashiki, Ryusuke Kuroki & Natsuki Hosono)

(TRAPPIST-1の7つの惑星群の公転の状況)

それぞれの公転軌道半径は(TRAPPIST-1 b, c, d, e, f, g, hの順で) 0.011, 0.015, 0.021, 0.028, 0.037, 0.045, 0.063 天文単位に存在し、半径はそれぞれ地球の1.08, 1.05, 0.77, 0.92, 1.04, 1.12, 0.76倍と、ほぼ地球の大きさに等しいと見積もられています。この星のハビタブル・ゾーンは太陽系相当天文単位(SEAU)によると、
金星相当軌道 0.016 天文単位
地球相当軌道 0.023天文単位
火星相当軌道0.035天文単位
trappist-1_d_orbh

(SEAUによるハビタブルゾーンの位置)

Kopparapu et al.2013によると
内側境界Recent Venus 0.019天文単位
地球サイズ惑星の暴走温室限界 0.024天文単位
外側境界最大温室限界0.048天文単位
trappist-1_d_orbk

(Kopparapu et al. によるハビタブルゾーンの位置)

となっており、SEAUによると、bは内側境界の内側で温度は高く、c, d, eはハビタブル・ゾーンに存在すると考えられています。

(SEAUによるハビタブルゾーンとTRAPPIST-1b,c,d,e,f,g,hの軌道位置,赤線が金星相当軌道,緑が地球相当軌道,水色が火星相当軌道,青がスノーライン)

ただし、TRAPPIST-1 bにおいても、潮汐ロックされているとすれば、惑星の昼半球と夜半球の境界領域にハビタブル・ゾーンが存在する可能性が指摘されており、また、他のf,gについてもスノーラインの内側にあり、潮汐力や内部の熱源などあれば、ハビタブルゾーンと考えられる可能性もあります。

また、Kopparapu et al.2013によると、ハビタブルゾーンにある惑星は、d, e, f ,g となり、先ほどのcは内側境界の中に位置してしまいます。TRAPPIST-I dはしかしながらRecent Venusの内側に位置はしますが、暴走温室限界線の内側にあるので、そのままでは海洋は存在できませんが、潮汐ロックされている場合境界領域(terminator)に狭い海が存在しうるとも考えられます。TRAPPIST-I gはしかしながら、外側境界最大温室限界付近のため、十分な温室効果ガスがある場合のみ居住可能だと考えられます。

(Kopparapu et al. 2013 によるハビタブルゾーンとTRAPPIST-1b,c,d,e,f,g,hの軌道位置,赤線がRecent Venus境界線、緑色が薄い色からそれぞれ火星・地球・スーパーアースサイズの暴走温室限界線,その外側の薄青色が最大温室効果限界線(Maximum G), その外側の青が初期火星線(Early Mars)。この判定によるとTRAPPIST-1 e, f, gがハビタブルゾーンとなる)

NASAの公式ページには、カラフルなイメージ図やVR, 3Dイメージなども公開されています。

https://exoplanets.nasa.gov/trappist1/

カリフォルニア工科大学のジェット推進研究所(JPL)-Spitzer宇宙赤外望遠鏡のページによると、TRAPPIST-1の惑星のほとんどすべてが潮汐ロックされており(すなわち、常に中心星TRAPPIST-1に同じ面を向けており)、乾燥して暑い(熱い)昼半球と、寒くて氷に覆われているであろう夜半球にわかれているだろうとされています。ハビタブルゾーンに存在する惑星はTRAPPIST-1 e, f, gであるが(b-hの)いずれの惑星も液体の水が潜在的に存在する可能性があるとされている。また境界領域(terminator)に海が存在するのはTRAPPIST-1dで、海が広く存在する可能性のあるTRAPPIST-1e,fでも昼半球に集中しており、夜半球は氷で覆われているであろう、と解説がされています。このページではTRAPPIST-1 bは木星の衛星イオ(Io)のようであり、また最も寒いTRAPPIST-1 hはエウロパ(Europa)のように描かれています。

http://www.spitzer.caltech.edu/images/6266-ssc2017-01a-TRAPPIST-1-Planet-Lineup

2018年2月のより詳細な調査結果によって、いくつかの惑星は地球よりも水を大量に保有している可能性も示唆されています。より中心星に近いb,cでは水蒸気、d,e,fでは液体と氷、そしてgは大部分が氷としてでしょう。この詳細調査によって、それぞれの惑星の密度がより正確に求められました。現在ではTRAPPISTシステムは最もよく観測された惑星システムの一つといえます。

七つの地球サイズの惑星にそれぞれ液体の水が存在する可能性のある惑星系というのは、非常に興味深い惑星系です。また赤色矮星の寿命は太陽とくらべて桁違いに長いので、もしかすると非常に長い間進化した安定的な生命体が文明を築き、それぞれの惑星間で文明交流を繰り返しながら今後も長きにわたって存在してゆく、「理想郷」なのかもしれません*。
(文責:山敷庸亮)

TRAPPIST-1についての詳しいデータは以下のデータベースに

http://www.exoplanetkyoto.org/exohtml/TRAPPIST-1.html

* 実際に理想郷かどうかについて、以下のような懸念と論点もあります(野津翔太・山敷庸亮)

1) M型星は黒点活動・フレア等が太陽型星より活発であり、ハビタブルゾーンでの紫外線・X線強度などが強い。それらがハビタビリティにどう影響するかは不明。惑星大気が剥ぎ取られている可能性も否定できないが、逆に厚い大気に覆われていれば、これらが高エネルギー電磁波のシールドになる可能性もある。ただし、潮汐ロックされているとすれば、地磁気が存在しない可能性もあるため、その点では荷電粒子の直撃を受ける可能性も高い。
2) M型星の中でも低温側の星は全球対流状態にあると同時に、自転・活動性の振る舞いがM型の高温側の星に比べて良く分かっていない部分もあるため、実際どの程度このTRAPPIST-1が上記の活動があるのかはわからない。

なお、イラストにおいてexoplanetkyoto のページでは、潮汐ロックは起こりうるであろうが、それぞれ自転している惑星を想定しての想像図となっています

以下、Stellar Windowを利用して表示したTRAPPIST-1の星図上での位置。

trappist-1_d_stz0
(Position in Stellar Map of star TRAPPIST-1 and its Exoplanet TRAPPIST-1 b,c,d,e,f,g,h)
trappist-1_d_stz3
(Zoomed pos.in Stellar Map of star TRAPPIST-1 and its Exoplanet TRAPPIST-1 b,c,d,e,f,g,h)

1)Michaël Gillon, Emmanuël Jehin, Susan M. Lederer, Laetitia Delrez, Julien de Wit, Artem Burdanov, Valérie Van Grootel, Adam J. Burgasser, Amaury H. M. J. Triaud, Cyrielle Opitom, Brice-Olivier Demory, Devendra K. Sahu, Daniella Bardalez Gagliuffi, Pierre Magain & Didier Queloz. Temperate Earth-sized planets transiting a nearby ultracool dwarf star, Nature 533, 221–224 (12 May 2016) doi:10.1038/nature17448, Received 11 January 2016 Accepted 18 February 2016 Published online 02 May 2016
http://www.nature.com/nature/journal/v533/n7602/full/nature17448.html

https://www.theguardian.com/science/2016/may/02/could-these-newly-discovered-planets-orbiting-an-ultracool-dwarf-host-life

2)Michaël Gillon, Amaury H. M. J. Triaud, brice-Olivier Demory, Emmanuël Jehin1, Eric Agol, Katherine M. Deck, Susan M. Lederer, Julien de Wit, Artem burdanov, James G. Ingalls, Emeline bolmont, Jeremy Leconte, Sean N. Raymond, franck Selsis, Martin Turbet, Khalid barkaoui, Adam burgasser, Matthew R. burleigh, Sean J. Carey, Aleksander Chaushev, Chris M. Copperwheat, Laetitia Delrez, Catarina S. fernandes, Daniel L. Holdsworth, Enrico J. Kotze, Valérie Van Grootel, yaseen Almleaky, Zouhair benkhaldoun, Pierre Magain & Didier Queloz. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (23 February 2017) doi:10.1038/nature21360.

Received Accepted Published online 

http://www.nature.com/nature/journal/v542/n7642/full/nature21360.html

HD 164595 b

HD 164595 b は、2015 年に Courcol ら によって発見された、太陽系から 94 光年(28.9 pc)離れた距離にある海王星サイズの系外惑星です。
HD164595F
(Imaginary Picture of Warm Neptune HD164595 b)

中心星 HD 164595 は、太陽と同じ G 型星(G2V)で、表面温度は 5790 度、質量は 0.99 太陽質量と、太陽とほどんど同じです。そのため、HD 164595 恒星系のハビタブルゾーンは、太陽系とほとんど同じ位置にあると考えられます。それに対して、HD 164595 b は軌道長半径 0.23 天文単位(3441万km)と、水星軌道より随分内側を公転周期 40 日で一周し、質量が地球の 16 倍、半径が地球の 4.17 倍という、熱い海王星(Hot/Warm Neptune)だと考えられます。表面温度の計測結果はありませんが、惑星のアルベドを 0.3 と仮定すると、黒体温度が 531 ケルビン(摂氏258℃)と相当高くなり、地球型生命が住むには不適切な環境ではないかと想像できます。例えばこの惑星が大型の衛星を有していたとしても、その公転軌道(離心率は低い)から、ハビタブルゾーンに位置するのは困難であると考えられます。

HD169495Image
(Imaginary Picture of Warm Neptune HD164595 b orbiting around its Host Star HD164595)

HD164595Star
(ExoKyoto(アプリ版) による HD 164595 中心星の表示画面。中心星はG型星(G2V)で、その大きさの比較が、下の段の4つに記されています。左からハビタブル・ゾーン惑星が見つかったProxima Centauriとの比較、二番目が太陽との比較(大きさがほとんど同じ)、三番目がふたご座のポルックス(Pollux)との比較、一番右側がオリオン座のリゲル(Rigel)との比較)。ハビタブル・ゾーンの表示は、太陽系相当天文単位(SEAU)で、赤い線が金星軌道相当線、緑が地球軌道相当線、青が火星軌道相当線、で、この中心星データからの推定値では、ほとんど太陽系と一致しています)
HD_164595_b_OrbK
(ExoKyoto による HD 164595 の公転軌道とハビタブル・ゾーン(Kopparapu et al. 2013 による)の表示。金星相当軌道より内側にあることがわかります)

2016 年に、この恒星系から11GHzの電波シグナルが観測されたとの発表がありました。
(CNN News)
(Wired日本語記事)

現在、11GHzの電波シグナルの真偽については様々な議論がなされていますが、上述のとおり、このシグナルが「仮に」知的生命体のものであったとしても(1)知的生命体は、この惑星 HD164595 b ではなく、「未発見の」HD 164595 恒星系のハビタブルゾーンに位置する岩石惑星に住んでいるか、(2)地球型以外の(灼熱の環境・あるいは液体の水のない環境で生息できる)知的生命体か存在するか、あるいは(3)このシグナルが知的生命体が発信したものではないか、(4)Vakoch らが述べているように、重力レンズの作用で他の天体からの電波が曲げられたか、あるいは(5)観測エラーか、のどれかであることが考えられます。

また、HD 164595 は、ヘラクレス座(ケプラー観測領域のはくちょう座とこと座周辺)に位地し、夏から秋の夜空で観測することが可能なため、興味のある方は望遠鏡を向けて観測されることをお勧めします。

HD169495Stellar
HD164595_1
HD164595_2
(ExoKyoto Stellar Window を用いた HD 164595 の天球上の位置表示)

HD 164595 b についての詳しい情報は、こちらをご覧ください。
http://www.exoplanetkyoto.org/exohtml/HD_164595_b.html

(文責:山敷庸亮)

51 Pegasi b

1995 年に人類史上初めて、スイスのミシェル・マイヨール(Michel Mayor)らにより発見された最初の太陽系外惑星です。マイヨールとディディエル・クゥエロツらは当時最新鋭の高分散分光器ELODIEを備えたフランスのオート・プロヴァンス天文台(Observatoire de Haute-Provence: OHP)にて、視線速度法によりペガスス座51番星を観測し、木星質量の惑星が太陽系の水星軌道の内側を自転周期 4.2 日で公転していることを Nature 誌に発表しました (i)。この功績により、両氏は2019年ノーベル物理学賞を受賞しました。

51PegbPlanet
(Imaginary Picture of 51 Pegasi b as original “Hot Jupiter” Credit:Yosuke Yamashiki, Ryusuke Kuroki & Natsuki Hosono)

51PegasiStar_Planet2
(Hot Jupiter 51 Pegasi b orbiting around its host star 51 Pegasi, Credit:Yosuke Yamashiki, Ryusuke Kuroki & Natsuki Hosono)

ペガサスに騎乗したギリシャ神話の英雄ベレロポンにちなんでベレロフォン(Bellerophon)と呼ばれることもあるこの系外惑星(51 Pegasi b)は、その灼熱の推定環境にちなんでホットジュピター(灼熱の木星)と分類されました。その後、視線速度法により、数々のホットジュピターが発見されています。例えば同じペガサス座のオサイリス(Osiris: HD 209458 b)などは公転周期がわずか 3.5 日で主星のまわりを公転し、ハッブル望遠鏡により 2001 年に大気中に酸素と炭素が含まれていることが観測された初めての系外惑星です。

太陽系の形成過程の標準モデルでは、ガス惑星は中心星から遠くはなれた場所(~5AU)で形成されるとされていたため、このような中心星近傍(<0.05AU)に存在する巨大ガス惑星の形成過程は多くの議論を呼びました。その後、恒星から遠く離れて形成された巨大ガス惑星が軌道変遷により水星軌道の内側にまで移動してきた可能性が最も高いとされています。

なお、ミシェル・マイヨール氏は第 31 回京都賞を受賞され、同年にはノーベル物理学賞候補にもノミネートされました。そして、2019年には宇宙論のJames Peebles, そして共同発見者のディディエル・クゥエロツ(Didier Queloz)とともにノーベル物理学賞を受賞しました。

(i) Michel Mayor & Didier Queloz. 1995. A Jupiter-mass companion to a solar-type star. Nature 378(23): 355-359.

マイヨールとクゥエロツは、高分解能分光計(高分散分光器)ELODIEを備えたフランスのオート・プロヴァンス天文台にてペガスス座51番星(51 Pegasi)の視線速度を測定し、木星質量の惑星が太陽系の水星軌道の内側(0.05AU)を公転周期 4.2 日で公転していることを発見し、また系外惑星(51Pegasi b)が、小さな赤色矮星からガスが流れ出た残骸であるという可能性と同時に、元々恒星から遠く離れて(~5AU)形成された木星質量のガス惑星が内側に移動してきたと考えられる可能性を示しています。特に恒星 51 Pegasi の推定寿命が G 型星の寿命に近い 100 億年と推定されたこともあり、惑星軌道の変遷によりガス惑星が内側に移動した可能性があることが発表後議論されました。また、この視線速度の変化が大質量星のパルサーに由来するものではないことを明らかにし、系外惑星発見の揺るぎないデータと論述を示しました。またフィレンツェにおける研究発表を通じて、ハーバード・スミソニアン天体物理センターを含む他の天文グループにより視線速度変化の周期が 4.2 日であるという独立調査がなされ、その信頼性が確認されました。

(文責:山敷庸亮)

51Peg_Map

51Pegb

51Peg_b_Zoom
(ExoKyoto Stellar Window を用いて表示した 51 Peg b の位置)

51 Pegasi b についての詳しい情報はこちら。
http://www.exoplanetkyoto.org/exohtml/51_Peg_b.html

Kepler-452b

(Kepler-452 b Ocean Planet Credit: Chise Hatsuoka, Habitable Research Unit SGH Moriyama High School)

Kepler-452b is located about 1,400 light-years away in the Cygnus constellation and is thought to be the first rocky planet discovered in the habitable zone. Its orbit is 384 days around its host star, Kepler-452, which is a G-type sun-like star around 60 billion years old. Since the planet is so similar to Earth, it has been called ‘Earth’s Cousin.’

(Kepler-452 b Credit: Fuka Takagi and Yosuke Yamashiki, generated using Planet Map Generator and OpenGL)

Kepler452b sub crowd
(Credit: Shione Fujita & SGH Moriyama High School)

Using ExoKyoto and the Weiss and Marcy method, the mass was estimated at about 4 times that of Earth, which is why the exoplanet is considered a ‘Super-Earth.’ Based on the assumption that it can easily have a large amount of water under high gravity and the fact that it is difficult to dissipate the acquired water, we imagine that this Ocean Planet is almost entirely occupied by oceans 30-50 km deep. If this is the case, the planet wouldn’t have continents but it is assumed to have only chains of islands like Hawaii.

However, since the host star is about 1.5 billion years older than our Sun, it is expected to radiate more energy than the Sun, and Kepler-452b probably receives more energy than the Earth. Therefore, the water on the surface might not exist due to the (runaway) greenhouse effect. Additionally, the planet Kepler-452b is about 1.5 billion years older than the Earth, so a detailed study of the surface environment could provide information on environmental changes that Earth might face in the future.

In any case, it is important to verify the existence or non-exitance of the planetary surface environment and ocean through detailed follow-up observations in the future.

(文責:藤田汐音・佐々木貴教)

The location of Kepler-452 shown on the ExoKyoto Stellar Screen Kepler452b_Stellar

Kepler452b_Z0

Kepler452b_Z1

For more information about Kepler-452b, please visit the ExoKyoto Database:
http://www.exoplanetkyoto.org/exohtml/Kepler-452_b.html

Journal Articles:

1.) Discovery and Validation of Kepler-452b: A 1.6-R⊕ Super Earth Exoplanet in the Habitable Zone of a G2 Star

2.) Climate and Habitability of Kepler 452b Simulated with a Fully Coupled Atmosphere–Ocean General Circulation Model

3.) Quantitative estimates of the surface habitability of Kepler-452b

 

WEB Articles:

1.) Kepler-452b: Earth’s Bigger, Older Cousin — Briefing Materials

2.) One Of The Most Earth-Like Worlds We’ve Found May Not Actually Exist

3.) Kepler 452 b: Inhabitable ‘Earth 2.0’ could be statistical mirage, study shows