Category: Introduction to Exoplanets

Kepler-90 i (Kepler 90 System)


Kepler-90 is a G-type main-sequence star located in the Lyra constellation, about 2545 light years from Earth.
It has a mass and volume are about 1.13 and 1.2 times that of our sun. Our sun has a surface temperature of about 5778 Kelvin and it is around 4.6 billion years old, while Kepler-90 has a surface temperature of about 5930 Kelvin and is an estimated 2 billion years old.

<Fig. 1 Imaginary Image of Kepler-90: Image credit Fuka Takagi & Yosuke A. Yamashiki>

A remarkable discovery found that Kepler-90 also has eight planets in its solar system, the same as our own. This makes Kepler-90 hold the record for most planets orbiting a star that we have discovered yet.

<Fig. 2 Planets Orbiting Kepler-90, Using the ExoKyoto Application>

NASA and Google announced n November 14, 2017, that they discovered Kepler-90i, the eighth planet in the Kepler-90 system. Kepler-90i was discovered by analyzing data from the Kepler Space Telescope using a new machine learning system developed by Google. NASA also discovered Kepler-80g using the same system.

<Fig. 3 Imaginary Image of Kepler-90i Image Credit Ryusuke Kuroki, Yosuke A. Yamashiki>

Kepler-90’s planetary system structure is similar to that of our own solar system. All of the six inner planets are rocky planets, slightly larger than Earth or smaller than Neptune, and the two outer planets are large gas giants. The outermost planet, Kepler-90h, is a Jupiter-sized planet that orbits the host star at the same distance (1.01 AU) as the Earth to the Sun, orbiting the star in about 331 days.

Of course, there are slight differences from our solar system. The outermost planet has an orbital radius roughly equal to that of Earth, and all eight planets are squeezed into a much smaller area than the planets in our solar system. The orbits of the six inner planets are particularly small, for instance, while Mercury has an orbital period of 88 days, Kepler-90i orbits Kepler-90 in just 14.4 days. Consequently, the surface temperature of Kepler-90i can reach 640 Kelvin, and life on the surface is thought to be impossible.

Kepler90Movie

<Movie 1 Kepler-90 and its Planetary Orbits>

It is widely thought that the planets in the Kepler-90 system were once spread out, but for some reason have now moved closer to the host star in their current orbit.

AI produced by Google discovered the new planet by using a neural network of mathematical models, similar to how the human brain works, which identifies a planet’s signal with incredible accuracy. The AI already discovered two exoplanets after analyzing only 670 of the approximately 200,000 celestial objects observed by the Kepler Space Telescope. More exoplanets are expected to be discovered by this method in the near future.

<村嶋慶哉・山敷庸亮>

For more information on Kepler-90i, please visit the ExoKyoto Database:

http://www.exoplanetkyoto.org/exohtml/Kepler-90_iJP.html

 For more information about the host star Kepler-90, please visit the ExoKyoto Database:

http://www.exoplanetkyoto.org/exohtml/Kepler-90JP.html

Ross 128 b (Proxima Virginis b)


(Imaginary Image of Ross-128b Image Credit 清水海羽 守山高校ハビタブル研究会)

(Imaginary Image of Ross-128b Image Credit: Yosuke Yamashiki, Ryusuke Kuroki)

Ross-128b is a new habitable planet has been discovered, located about 11 light years (3.4 parsecs) away from our solar system. Its mass is about 1.35 times that of the Earth (ExoKyoto estimates 1.31), but the exact radius is not known because of a lack of transit. However, according to the mass estimation module (Weiss & Marcy, 2014) by ExoKyoto, the radius is estimated to be 1.078 times that of the Earth. The planet’s host star is Mare Virgo, which is a small M-type star in the constellation Virgo, with an estimated temperature of 3192 K and a mass 0.16 times that of our sun. It is the second closest habitable planet to Earth after Proxima Cen b. A research team from Université Grenoble Alpes in France made the discovery using a 3.6-meter diameter telescope at the European Southern Observatory (ESC) in Chile and the exoplanet survey instrument HARPS*. Ross-128b orbits the star Ross 128 in around 9.9 days per orbit and blackbody temperatures of the planet are 269 K for an Earth albedo (281 K for ExoKyoto) and 213 K for a Venus albedo according to Bonfils et al. 2017, which is classified as habitable (Earth’s blackbody temperature is 255 K).
The star Ross 128, is a red dwarf with a rotation estimated to be more than 120 days, which means that there is only moderate activity and it is unlikely to produce frequent superflares. Becaus eof this, depending on the state of the atmosphere of the planet, liquid water may exist and there is a possiblity it could support life.

A massive telescope scheduled for completion in 2024 called the ELT will begins its observations soon, and it this should be able to study the composition of the planet’s atmosphere to tell us more.

(坂東日菜・山敷庸亮)

For more information abour Ross-128b, please visit the ExoKyoto Database:
http://www.exoplanetkyoto.org/exohtml/Ross_128_bJP.html

X. Bonfils et al. 2017. A temperate exo-Earth around a quiet M dwarf at 3.4 parsecs. Astronomy & Astrophysics manuscript © ESO

Imaginary Image of Ross 128 b (Proxima Vir b) *With no tidal locking.

The Habitable Zone of Ross 128 b (Proxima Vir b)

The Habitable Zone Orbits of Ross 128 b (Proxima Vir b) (Kopparapu et al.)
According to ExoKyoto, Ross 128b is calculated to be slightly inside the habitable zone limits.

The Habitable Zone Orbits of Ross 128 b (Proxima Vir b) (Kopparapu et al.)
According to ExoKyoto, Ross 128b is calculated to be slightly inside the habitable zone limits.

Ross 128 b (Proxima Vir b) Size Comparison

Ross 128 b (Proxima Vir b) Stellar Window Location

Ross 128 b (Proxima Vir b) Stellar Window Location

55 Cancri e

55 Cancri e is a super-Earth — about twice our planet’s size — that zooms around its star in 18 days. It has a surface temperature of nearly 4,900 degrees Fahrenheit (2,700 degrees Celsius). For a while, it was dubbed the “diamond planet” because scientists suggested that it was composed of diamonds and graphite. While that theory is not as popular today, the planet still remains an interesting object of study due to its high density and its very close proximity to its parent star. Several follow-up studies have yielded more insights about its super-hot surface, as well as its atmosphere.

(Credit: Rina Maeda & SGH Moriyama High School)

Astronomers discovered the planet in 2004 after looking at the spectrum of its parent star, 55 Cancri A, one of two stars in a binary system about 40 light-years from Earth in the constellation Cancer. There are at least four other planets in the same system, mostly discovered before 55 Cancri e. The team (led by the University of Texas at Austin’s Barbara McArthur) discovered subtle tugs on the parent star that could be explained by the presence of yet another planet. While the planet’s existence was challenged by a second research team in 2005, a separate team in 2006 confirmed it.

(文責:高木風香)
(修正担当:野津湧太)

For more information about 55 Cancri e, please visit the ExoKyoto Database:
http://www.exoplanetkyoto.org/exohtml/55_Cnc_eJP.html

Beta Pictoris b

<Imaginary image of Beta Pictoris b>

Beta Pictoris b is located in the Pictoris constellation about 63 light-years from Earth. It orbits the star Beta Pictoris at 13.18 astronomical units.

The planet is about 1.65 times the size and 7 times the mass of Jupiter, it was discovered by direct imaging using European Southern Observatory’s Very Large Telescope.

Beta Pictoris b was discovered by using the Doppler effect on its rotation. As the planet moves further away from the observer, the wavelength of light becomes longer, and as the planet moves closer, the wavelengths become shorter.

Observing this change in wavelength (Doppler shift), we know that Beta Pictoris’ rotation cycle is about 8 hours, and its speed is around 100,000km/hr.

In comparison, Earth’s rotation speed is 1,700km/hr, and Jupiter’s is 47,000km/hr, which is the fastest in the solar system.

Because the planets in Beta Pictoris b’s solar system all tend to be this fast, it is implied that the relationship of speed and mass for this planet could be universal.

Beta Pictoris is a young star at only around 20 million years old, there is a debris disk around the star at about 1000 astronomical units, leading scientists to believe the system is still in progress.

Taking into consideration the passage of time and the planet’s contractions due to cold, the rotation is expected to be very fast.

Also, the planetary systems have 493 exo-comets that were discovered by a research team in France, and each comet has various trajectories that are affected by the planet’s large size and gravitational field. It is thought that the comets were originally one celestial body that broke apart into two groups of comets.

One group of comets released gas and dust due to their vigorous movement, causing them to fly close to the host star, which means that any ice present would be dried up.

The other group of comets move the same way, orbiting the planet, which means they are thought to be from one celestial body that broke apart.

Beta Pictoris is a young system that is still evolving.

What could have been happening in our solar system 45 billion years ago? This is why Beta Pictoris a subject of extremely important research.

<文責:山中陽裕>

References:
http://www.eso.org/public/news/eso1414/
http://www.nature.com/nature/journal/v509/n7498/full/nature13253.html?foxtrotcallback=true
http://www.eso.org/public/news/eso1432/

Kepler-35(AB) b

(Kepler-35AB bの想像図 前田理那 SGH守山高校ハビタブル研究会)

Kepler-35bは地球から約5,365光年の距離にあり、はくちょう座の中にある巨大ガス惑星です。2012年にケプラー宇宙望遠鏡により発見されました。Kepler-35bは質量が本星の1/8、半径が地球の約8倍で土星サイズのガス惑星と考えられています。

Kepler-35bの注目すべき点は、周連星惑星(連星の周りを回る惑星)だということです。Kepler-35bの主星は両者ともG型星、太陽よりもやや小さな星で共通重心の回りを20日かけて公転し、その外側をKepler-35bが131日かけて公転しています。

周連星惑星は主星が1つの惑星と比べて軌道が安定しないため長い間その存在が議論されてもましたが、2011年にケプラー宇宙望遠鏡で周連星惑星Kepler-16bが発見されたことを皮切りに少しずつ発見され始めており、現在では主星を3つ、4つもつ惑星も発見されています。

Kepler-35(AB)bの主星であるKepler-35A、Kepler-35Bは両者とも太陽よりもやや小さいG型星(G型というのは恒星の分類法のー種で太陽もG型星に分類されます)で、互いに共通な重心の周りを20日かけて公転しています。

Kepler-35bには生命が存在するのでしょうか。Kepler-35bは木星や土星のようなガス惑星なので地球と同じような生命がいるとは考えにくいですが、ひょっとしたらアメリカの天文学者カールセーガン博士が想像したような気球形の生物なんかがいるのかもしれません。また、ガス惑星のまわりに巨大岩石衛星が存在する可能性も高く、そこに我々のような生命が存在するかもしれません。

銀河系内には周連星惑星が数百万個存在すると現在では考えられています。その中に生命を宿している惑星は存在するのでしょうか。

太陽が2つ連行する世界の生命、そんなものがいると考えるだけでもわくわくしますね。

(梨元昴・山敷庸亮)

 

Kepler-35 bについての情報は こちらから

http://www.exoplanetkyoto.org/exohtml/Kepler-35_(AB)_bJP.html

 

GJ 1132b


(GJ1132bの想像図   画:清水海羽 守山高校ハビタブル研究会)

 

これまでにたくさんの系外惑星が発見され、その幾つかには大気が存在することがわかってきました。しかし、それらはいずれも木星のような巨大ガス惑星でした。ところが、今回大気の存在が確認されたGJ1132bは、地球とほとんど同じ大きさの「地球型惑星」です。地球から39光年先にあるM型星GJ1132を周回するこの惑星は、地球のおよそ1.4倍のサイズと1.6倍の質量を持っています。なお、この惑星は2015年にすでに発見されており、金星と似た惑星ではないかと推測されていました。

では、一体どうしてこの惑星が大気を持っているとわかったのでしょうか。系外惑星の大気の観測は、「トランジット観測」という手法を用いて行われます。これは、恒星の前を惑星が横切った際に、我々観測者に届く恒星からの光が遮られて弱くなる現象を利用した手法です。横切る惑星のサイズが大きいほど、この減光率は大きくなります。太陽系で言えば、月や金星が太陽からの光を隠す現象、すなわち「日食」にあたります。(つい先日、アメリカ大陸での日食が話題になりましたね)ところが、この減光率が観測する光の波長によって異なる場合があります。これは、光の波長によって惑星が遮る領域のサイズが異なることを意味します。つまり、ある波長の光は透過し、別の波長の光は通さないような物質が、惑星の表面に纏わり付いていると考えられるのです。そのような物質は、ガス、つまり大気であると考えるのが妥当でしょう。

今回、様々な波長の光でGJ1132bによるGJ1132の減光率を観測した結果、全波長で平均した「惑星大気の半径」は1.43±0.16地球半径であるのに対して、固体部分(つまり惑星の「地表」)の半径は約1.375地球半径であるとわかりました。さらに、特定の波長の「惑星大気の半径」が大きいことから、この厚い大気は水蒸気とメタンを含んでいることがわかりました。

このような、大気(しかも水蒸気とメタンを含む)と地表を持った地球型惑星には、生命が存在しているかもしれません。しかし、残念ながらGJ1132bの表面温度は370℃もあると推測され、生命が存在するのは難しそうです。一方で、M型星は地球の周りにたくさん存在しており、似たような惑星が今後見つかることが期待されます。
(文責:芝池諭人)

GJ 1132 bについての詳しい情報
http://www.exoplanetkyoto.org/exohtml/GJ_1132_bJP.html

参考文献
The Astronomical Journal (2017): “Detection of the Atmosphere of the 1.6 M_⊕ Exoplanet GJ1132b” John Southworth1, Luigi Mancini, Nikku Madhusudhan, Paul Mollière, Simona Ciceri, and Thomas Henning (http://iopscience.iop.org/article/10.3847/1538-3881/aa6477/meta)
BBS NEWS, Science & Environment: Atmosphere found around Earth-sized planet GJ 1132b (http://www.bbc.com/news/science-environment-39521344)
sorae.jp,天文: 地球サイズの系外惑星「GJ1132b」に大気 水の存在の可能性も(http://sorae.jp/10/2017_04_07_taiki.html)


(ExoKyoto Stellar Mapを用いて表示したGJ 1132 bの位置)


(ExoKyoto Stellar Mapを用いて表示したGJ 1132 bの位置 Zoom Level 3)